首页> 外文OA文献 >A consistent relaxation of optimal design problems for coupling shape and topological derivatives
【2h】

A consistent relaxation of optimal design problems for coupling shape and topological derivatives

机译:一致地缓解了耦合形状和拓扑导数的最佳设计问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, we introduce and analyze a general procedure for approximating a 'black and white' shape and topology optimization problem with a density optimization problem, allowing for the presence of 'grayscale' regions. Our construction relies on a regularizing operator for smearing the characteristic functions involved in the exact optimization problem, and on an interpolation scheme, which endows the intermediate density regions with fictitious material properties. Under mild hypotheses on the smoothing operator and on the interpolation scheme, we prove that the features of the approximate density optimization problem (material properties, objective function, etc.) converge to their exact counterparts as the smoothing parameter vanishes. In particular, the gradient of the approximate objective functional with respect to the density function converges to either the shape or the topological derivative of the exact objective. These results shed new light on the connections between these two different notions of sensitivities for functions of the domain, and they give rise to different numerical algorithms which are illustrated by several experiments.
机译:在本文中,我们介绍并分析了通过密度优化问题近似“黑白”形状和拓扑优化问题的通用过程,从而允许存在“灰度”区域。我们的构造依赖于正则化算子来涂抹精确优化问题中涉及的特征函数,并依赖于插值方案,该方案赋予中间密度区域虚构的材料属性。在关于平滑算子和插值方案的温和假设下,我们证明了随着平滑参数的消失,近似密度优化问题的特征(材料属性,目标函数等)收敛到它们的精确对应项。特别地,近似目标函数相对于密度函数的梯度收敛到精确目标的形状或拓扑导数。这些结果为领域功能的敏感性这两个不同的概念之间的联系提供了新的亮点,并且它们产生了不同的数值算法,这些数值算法通过几个实验进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号